Running Python
Interactive shell

Invoke the Python interactive shell by
typing “python” on the command line

To open a file in the interactive shell Add it as a
command line argument “python myfile.py"

Interactive notebooks

Jupyter notebooks
(Jupyter.org)

Think of this as an interactive shell that runs via a web client

"The Jupyter Notebook is an open-source web
application that allows you to create and share
documents that contain live code, equations,
visualizations and narrative text" (Jupyter.org)

Anaconda

Is a Python distribution which comes
with a number of different tools
(including a Jupiter notebook)

Python refresher - notes

Beginner
friendly
Python

Note: This is a basic module, but there were a few
things that I'd either forgotten or didn't know

'Pass' statements can be used where the program expects a statement
but none is required (see
https://docs.python.org/3/tutorial/controlflow.html#pass-statements)

Data types - check with type()
Numerics (integers, floats etc.)

Note: you can use _ within numeric literals to
improve readability (See:
https://www.python.org/dev/peps/pep-0515/)

Booleans

Remember: Tuples and
Strings are immutable, sets are not ordered

Sequences (List, Tuple, Set, String)

There are several ways to create multi-line strings in
Python, including docstrings (another way looks like
a tuple without the commas)

Negative indexing
- i.e. blah[-1]

my_list.pop() removes the last item
(updating the list) and returns it).

my_list.remove("blah™) will remove
the given item from the list

Dict

Add new properties with bracket syntax,
i.e. person['name’] = 'Boing'

Delete properties with the del
keyword, i.e. del person['name’]

Get the keys with keys() and the values with values()
Use get() to retrieve an item by key.

This returns none when the key isn't
found. Optionally takes a second
parameter that can be the return value
where a key isn't found.

Get the items with - you guessed it - items()
Tuple

Much like lists but immutable

dogs = (‘Fido’, 'Butch’, 'Max')
Sets

Mutable sequences
of unique items

Has a lot of
useful methods

Sets do not
preserve their
order

colours = {'blue’,
‘green’, 'pink’}

None

None is a variable of the
NoneType. It just means that the
variable contains nothing

Files

It's easy to create, read and
update files using Python

Mutable vs Immutable

Immutablity can improve
performance and improve
data integrity

Printing
Prior to 3.6 people used "".format(),

but there are now fstrings - f"Hello {name}"

Intermediate Python

Comparison operators

is keyword (for identity)

Loops

For

Loops over an iterable

Unpacking

((30, 'Kalob'), (5, 'Zephyr'), (3, 'Henry'))
for age, name in people:
print(f"{name} is {age} years old")

Kalob is 30 years old
Zephyr is 5 years old
Henry is 3 years old

Unpacking a tuple

Unpacking a dictionary

guitar = {
"model": "Telecaster"
"brand": "Fender"

}

for key, value in guitar.items():
print(f"{key}:\t {value}")

model: Telecaster
brand: Fender

You use the .items() to return a list of
tuples from the dictionary
While

Break and continue

while True:

name = input("Guess my name: ")
if name.lower() == "henry":
print("YOU WIN")
break
print("That was the wrong name... try again!")

Continue skips the current iteration,
Break jumps out of the loop

Type casting
list() int() etc...
Helpful operators
The 'in' keyword

Works for iterables
(strings, lists, etc.)

The enumerate function

Enumerate
languages = [‘python‘, ‘javascript', ‘c++', ‘swift']

for index, lang in enumerate(languages):
print(index, lang)

@ python

1 javascript

2 c++

3 swift

Enumerate provides an easy way to get the current index of an item
The Zip function

Zipping

listl [‘a', 'b', 'c']
list2 = [1, 2, 3]

for letter, number in zip(listl, list2):

print(letter, " => ", number)
a => 1
b => 2
c = 3

When passed multiple iterables it
returns a zip object - which is an
iterator of tuples.

import

Comprehensions

List comprehensions

A way to make a for loop on one
line. Always return a list

mylist2 = [letter for letter in course]

Basic

vowels = [letter for letter in course if letter.lower() in ‘aciouy’]

With condition

c = [-40, -20, @, 10, 15, 25, 35, 50]
f = [(tempx1.8) + 32 for temp in c]
print(f)

Performing calculations

guitars = {key:value for key, value in zip(keys, values) if key != ‘year'}

witars))

Dictionary
comprehensions

See more here:
https://www.python.org/dev/peps/pep-0274/

range (10)])

There are also generator
comprehensions

Functions

def keyword

Default arguments

Args and Kwags

How they differ

Notice the use of ™' before args

def print_args(+args):
for arg in args:

print(arg)
print_args('Computer', 'Coffee', 'Cup', 'Monitor', 'Lamp')
Computer
Coffee
Cup
Monitor

Lamp

Args are denoted with the * and come through as an iterable (a tuple)

Kwargs are denoted with ** and come through
as a dictionary

General notes

The names are arbitrary - you don't have to use
the words args and kwags in your function
definitions. What matters is the presence of *
and ** before the names

The order matters "In a function call, arguments must
appear in this order: any positional arguments (value);
followed by a combination of any keyword arguments
(name=value) and the *iterable form; followed by the
**dict form." (From Learning Python, Lutz)

Comments

Docstrings - denoted with triple quotes

Allow for multi-line comments

Map

Loop through an iterable and provide a
function for each item

for new_num in map(new_func, nums):
print(new_num)

Has a different syntax to what
you'd see in other languages

This is also different in another important way:
map() returns a map object - not a list. To use it you
either need to iterate over it in a for loop or,
alternatively, to cast it to a list.

Behind the scenes a map object will use a
generator to get the values when cast or
used within a for loop

Filter

Filter items in an
iterables using a function

for num in filter(filter_even_numbers, nums):
print(num)

Within a for

evens = list(filter(filter_even_numbers, nums))

Cast to a list()

Lambda expressions

add = lambda numl, num2: numl+num2

Creating a one-time use function
(similar to anonymous or arrow functions in
JavaScript) which can be assigned to
a variable

These aren't used every day in
Python. But you do use them

Scope

name = "Kalob" # Global
def greeting():
name = "Zephyr" # Enclosing

def say_hello():
Anything here would be local
print("Name is ", name)

say_hello()

Python uses the LEGB rule (this is a
kind of lookup procedure, which
starts with Local and ends with

Built-in)

Local (or function) scope

Enclosing (or
non-local) scope

An Enclosing scope only
exists for nested
functions. If there is no
nested function, there is
no enclosing scope.

Global (or
module) scope

Built-in scope

def chickens():
¢ = ['Chuck’, 'Puck’, 'Cluck']
for i in c:
yield i
boo = chickens()
First time round they'll be printed
for i in boo:
print(i)

Chuck
Puck
Cluck

print(i)

Generators

A generator is a Python sequence creation object. With
it, you can iterate through potentially huge sequences
without creating and storing the entire sequence in
memory at once. Generators are often the source of
data for iterators (from Introducing Python, 2nd Ed)

Note: once the sequence that has been
created by a generator has been exhausted, it
cannot be iterated over again

range(), for example,
is a generator

next()

Gets the next value or throws an exception
if the sequence is exhausted

iter()

The iter() function returns
an iterator object

Iterable vs iterator

An iterable is something that
can be looped over

An iterator is an object that
makes something loop able

Advanced Python

ooP

name = "Python"

print(name)
print(type(name))

Python
<class 'str'>

Most things in
Python are objects

Classes

Tend to use Pascal case
(whereas snake casing is
normal in Python
elsewhere)

__init__is the
constructor

Note: any time you see a
'dunder’ you know it's
something Python provides

self refers to
the instance

Attributes
Methods

You must use 'self' as
the first argument

Inheritance

class Animal:

def __init__(self, name, weight):
self.name = name
self.weight = weight

def speak(self):
print("What does the animal say?")

class Cat(Animal):

def speak(self):
print("Meooowwww")

Achieved by adding parens to
the class definition and
providing the class to be extended there

Interfaces

An interface is a collection of
operations that do not have have
an implementation.

The most common use for an interface is to
be used as an interface between applications,
libraries or components

Some languages have a discrete
keyword for creating interfaces.
Python does not.

In Python, an interface is a class
for which the methods either
raise an exception or assert
False (which in turn raises an

exception)

Abstract Class Vs. Interface

Abstract Class Interface

* Can contain fields or methods * Contains only behaviour

tain any implementation

implement the behaviour

implement multiple

are public

ommon behaviour
implemented by

Note: So, how do Interfaces
different from Abstract Classes

Super function

>>> class C:
def act(self):
print('spam’)
>: class D(C):
def act(self):
super().act()

print(‘eggs’)

X = D()
>>> X.act()

The super function allows you to call
methods of a parent class

There is divided opinion about the use of the
super() function. See Chapter 32 of Lutz's
Learning Python for a description (where he

suggests referencing the given class methods
directly, rather than via super(). His opinion is that

"super has substantial downsides in typical code.

Most users are better served by the explicit name

call scheme... despite its advocate’s best
intentions, super is not widely recognized as “best
practice” in Python today, for completely valid
reasons”

Dunder methods (aka 'double
underscore methods',
sometimes called 'magic
methods')

There are many of these. The
course covers three.

init()

Constructor

str ()

Use this to set the string representation
of the given object (for example if you
were to pass an object to print())

len()

You can use this to set
what is considered the
'length’ - i.e. what would
be shown if you pass an
object to len()

dict()

Returns a dict representation of your object

Packages

A package is a collection
of modules. They usually
exist in their own folder.

__init__.py

The presence of this file tells Python
that a given directory is a package. It
can be an empty file.

Notes on __init__.py

Until Python 3.3 these are required for
a package import to work

The __init__.py file can contain code. If
so it will be run upon import. In this
way the __init__.py serves as a hook
for package initialisation-time actions
(such as creating required data files or

opening database connections)

Third party packages

A strength of Python is the number
of third-party packages

Typically hosted on PyPlI (the
Python Package Index)

We use pip to
install packages

To see which version of pip
you're using pass the -V flag
to pip (i.e. pip -V)

Note: this will look for the version of pip associated with
your version of Python. If you're one of those people who
need to use python3 in the command line (as | am) then you
would instead use pip3 -V

Use 'pip show
[package]' to see
version

Use 'pip freeze' to get a
snapshot of all the snapshot of
all your installed packages

A package is typically made
up of many modules

Modules

These are essentially .py files.

__name__ and __main__

In every Python script there is a
variable called __name___

If__name__=="__main__" we know thatitis a

program running the file (i.e. Python running it directly). If __name___is not

__main__" we know that this is an import

return “something"

What is the relevance of this? Well, what you'll often
see is that where __name__ =="_main__"thata
function will be called. This allows you to use a given
file as both an import and a regular program file

Errors and Exceptions

In Python we have try and except
(as opposed to the 'catch' you see
in other languages)

We use the except block to gracefully
handle errors and exceptions (rather than
execution just stopping)

Keywords

Try

Except (will run if there's an exception)

Else (will run if there
are no exceptions)

Finally (will always run)

numl r the first number: "

num2

r the second num

try:
numl float(numl)
num2 = float(num2)
div = numl / num2
print(div)
except ValueError:
print("There was a value error WOOPS")

except ZeroDivisionError:
print(“Cannot divide by zero")
except NameError as e:
print("There was an undefined variable somewhere.", e)
except Exception as e:
print(type(e))
print(e)
else:
print(f“Huzzah su
finally:
print("This will always run no matter what")

» divided {numl} and {num2}")

x

Catching Exceptions

Unit testing

PyUnit (called unittest in the library manual - see
https://docs.python.org/3/library/unittest.html), provides
an object-oriented class framework for specifying and
customizing test cases and expected results. It mimics the
JUnit framework for Java. This is a sophisticated
class-based unit testing system; see the Python library
manual for details.

def dog():

def speak():
return "Woof woof!"

total = speak()
return speak
woof = dog()
woof
<function __main__.dog.<locals>.speak()>
woof ()

‘Woof woof!"'

Nested functions

The same concept as
closures in JavaScript

Useful in Python for organising
the logic within a function and for
creating decorators

Decorators

A decorator is a callable that takes another callable
as an argument. It may augment or replace the
function passed as an argument.

Essentially - what we're doing
here is providing a wrapper for
the original function

Decorators allow us to
keep our code DRY

Generators

"A generator is a Python sequence creation object. With
it, you can iterate through potentially huge sequences
without creating and storing the entire sequence in
memory at once. Generators are often the source of
data for iterators...." From Introducing Python, 2nd Ed

"Every time you iterate through a generator, it keeps track of
where it was the last time it was called and returns the next
value. This is different from a normal function, which has no
memory of previous calls and always starts at its first line
with the same state.” From Introducing Python, 2nd Ed

def my (first=0, last=10, step=1):
number first
while number < last:
yield number
number += step

Simple generator

def chickens():
¢ = ['Chuck’, 'Puck’, 'Cluck']

for i in c:
yield i

boo = chickens()

for i in boo:
print(i)

Chuck
Puck
Cluck

The sequences created by a generator are good
for one pass. After they've been exhausted
there's nothing to iterate over

next()

Will get the next value from the sequence resulting
from a generator. Once the sequence is exhausted
an exception will be thrown.

Generator
comprehensions

Looks like other comprehensions but is
surrounded by parentheses

Linting

Isort - will sort your
imports correctly

flake8 - will check files
for unused imports etc.
You will then go in an
make the changes
yourself.

black - is an uncompromising
code formatter. It is
opinionated. It will manage line
length, manage quotas vs
apostrophes etc.

Virtual environments

Allow you to have different
versions of Python and packages
per project. Everything you do in

Python should ideally be done
within a virtual environment

Two popular ways
to create them

venv - built into Python

pipenv - newer, arguably
easier way to create virtual
environments. Requires
installation.

Differences:

Allows you to specify a
different version of Python

Once inside a pipenv
environment you install
dependencies with “pipenv
install’ rather than “pip install®

You use “pipenv shell’ to enter
the environment (rather than
source ... activate)

You use Ctrl+D to leave the environment
(rather than using 'deactivate')

Requirements files

Usually a requirements.txt file

Requirements can be installed with “pip install -r
requirements.txt’ (do this within a VE to ensure they are
not installed to your local machine)

When you have installed new dependencies you
can save these to your requirements.txt file with
“pip freeze > requirements.txt’

Interactive python

ipython is a more convenient
version of the interactive shell

Python environments

pyenv allows you to have
multiple version of Python

Simple web server

Good for
serving static
files

python3 -m
http.server [port]

