
Progressive Web Apps
Part 2. The Service Worker

Part 2: The
Service Worker

The Service worker

A web app

Your HTML, CSS,
JavaScript, images etc.

A Service Worker

A magical thing we’ll look at
in more detail later

App distribution
model

Allows for the app to be
installed. The thing which is
used here is a Web app
manifest

If you’ve got all three, you’ve got a PWA

The need for all three to be a PWA explain why “You can have web apps that use some PWA capabilities but
aren’t PWAs and PWAs that use only some PWA capabilities”

“At the heart of every progressive web app is the service worker.”
Building Progressive Web Apps, Tal Ater (O’Reilly)

The service
worker is...
“JavaScript running in its
own thread that will act
as a locally installed web
server or web proxy for
your PWA...”

Progressive Web Apps: The
Big Picture by Maximiliano

Firtman

“At its simplest, a service worker is a script that runs in the web browser
and manages caching for an application.

Service workers function as a network proxy. They intercept all outgoing
HTTP requests made by the application and can choose how to respond
to them. For example, they can query a local cache and deliver a cached
response if one is available. Proxying isn't limited to requests made
through programmatic APIs, such as fetch; it also includes resources
referenced in HTML and even the initial request to index.html.

Service worker-based caching is thus completely programmable and
doesn't rely on server-specified caching headers. Unlike the other scripts
that make up an application, such as the Angular app bundle, the service
worker is preserved after the user closes the tab. The next time that
browser loads the application, the service worker loads first, and can
intercept every request for resources to load the application. If the service
worker is designed to do so, it can completely satisfy the loading of the
application, without the need for the network.”

Angular documentation

https://app.pluralsight.com/courses/2f28c215-61f8-4c89-8d3f-9df5faa2773b/table-of-contents
https://app.pluralsight.com/courses/2f28c215-61f8-4c89-8d3f-9df5faa2773b/table-of-contents
https://angular.io/guide/service-worker-intro

Service Workers are a bit different to
the JavaScript we’re used to

N
av

ig
at

io
n

C
lo

se
 ta

b.
 O

pe
n

ne
w

 ta
bJS JS JS

N
av

ig
at

io
n JS

Service
worker
registration

JS

Runs on a single thread (event loop etc.). Attached to a single
HTML page and its lifecycle. Global object is window

Runs on a separate thread (having its own event loop etc.). Global object is self. Lifecycle
persists beyond tab closure - and in some cases - browser closure (!)

What Service
Workers can do

The big capabilities they can provide
(if you chose for them to do so)

1. Network independence - can
completely satisfy loading the
application

2. Instant loading of the
application from their cache

3. Background data
synchronisation with the server

4. Background fetching of files
5. Respond to the context in

which the application is running
6. Passively receive messages via

the Push API

Not all features are
available on all
platforms, so use
progressive
enhancement.

Example 1:
Registering a
Service
Worker
To run this code locally visit
https://github.com/gtvj/exploring-pwas
and follow the instructions in the
README.md file.

This first example can be reached by
clicking the ‘Simple Service Worker’
link (and the code is in the
/simple-service-worker/ directory)

A few things to note here:

1. Object detection is used (for progressive enhancement)
2. The ‘load’ event is used to improve performance
3. The register() method returns a promise
4. We can see that our Service Worker has been registered by looking at

a. the message printed to the console
b. Either finding it in the ‘Applications -> Service Workers’ menu item in

Developer Tools (if using Chrome) or putting
about:debugging#/runtime/this-firefox in the address bar (if using Firefox)

https://github.com/gtvj/exploring-pwas

Example 2.
Service Worker
events
“A service worker is an event-driven
worker registered against an origin
and a path. It takes the form of a
JavaScript file that can control the
web-page/site that it is associated
with, intercepting and modifying
navigation and resource requests”

MDN
https://developer.mozilla.org/en-US/do
cs/Web/API/Service_Worker_API

Let’s take a closer look at the
‘fetch’ event

https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API

A closer look at the Service Worker ‘fetch’ event
To demo:

● Clear site data, from the
Application panel

● Click the ‘Service worker events’
link

● Note the colour of the logo - and
that this logo is loaded via an
 tag in the HTML

● Reload the page and look at the
logo

● Close the browser and past the
image URL into a new window

Not to be confused
with the Fetch API

The service worker receives a fetch event for every request within its scope.

This includes requests that are made within CSS files, HTML tags and by
JavaScript. It even includes the initial request for the HTML file.

Within the handlers we can use respondWith() to deliver a different resource -
either from a cache, by making an alternative network request, or building a
response on the fly

An interesting exercise would be to update the Service Worker so that an
alternative HTML file is served.

Example 3.
Creating
responses ‘on
the fly’
In addition to fetching ‘different’ files,
we can use the Response()
constructure to create a response ‘on
the fly’.

An example of this can be found in the
service-worker-response-on-the-fly
directory

Example 4.
‘Catching’ failed
fetches
By intercepting a browser’s default
response to a Fetch event and
interjecting Fetch API call we can
detect a user being offline and provide
a custom experience.

Note:

● Test event.request.url
● event.respondWith
● Use of catch() on the promise

returned by Fetch

Example 3. Broad brush
caching
A slightly more involved example can be seen by clicking the ‘Service
Worker cache everything’ on the home page when running
https://github.com/gtvj/exploring-pwas. Then:

1. Disable the cache (in the Network panel) and set it to ‘Slow 3G’
connection

2. Click the ‘Service Worker cache everything’ link
3. Check the

a. browser console to see the service registration message
and confirmation that cache_list has been added to
cache

b. Application tab to see the registered Service Worker
4. Stop your web server
5. Reload the page

Something to note:

Despite being on a ‘Slow 3G’ connection
the page loads instantly

https://github.com/gtvj/exploring-pwas

A closer look at
this example

The files we want
to cache

self is the worker global scope -
like window in normal browser JS

or global in Node

Opening the cache we want
to use and add our items

Attaching an event listener
to all fetch events - including

those raised by HTML or
CSS

Preventing the default fetch
handling and providing our own

Response promise

While this isn’t a mountain of
code, it’s quite a lot
considering it’s simply
saying:

● Cache a bunch of files
when the Service
Worker is registered

● From then on, respond
to fetch requests with
the cached version - if
one exists. Otherwise
make a network
request

The point here is that Service
Worker APIs are low-level
requiring developers to do a
lot of ‘reinventing the wheel’
for common use cases.

In summary
“Service workers essentially act as proxy servers that sit between web applications,
the browser, and the network (when available). They are intended, among other
things, to enable the creation of effective offline experiences, intercept network
requests and take appropriate action based on whether the network is available,
and update assets residing on the server. They will also allow access to push
notifications and background sync APIs.”

MDN documentation

https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API#Service_worker_concepts_and_usage

