
Progressive Web Apps
An overview of their capabilities and introduction to

 associated technologies

Part 1: An
introduction to
PWAs

The problem
space
● Building, maintaining and

distributing multiple native
apps - for both mobile and
desktop - is expensive and
difficult

● Web apps don’t have access
to some of the ‘nice to have’
features enjoyed by native

Put simply: native is capable but
expensive with limited reach; web is
less capable, cheaper and with much
better reach.

Hence the rise of compile to native
tools

Write in web technologies,
compile to native

“..but those experiences all rely on
technologies that won’t also work in the
browser. PWA’s goal is to build directly on
the web. So that means you can maintain
one code base that’s going to work for
users in the browser and your installed
users.”

PJ McLachlan, Chrome Dev Summit 2019 See:
https://youtu.be/Hp_dQvQyYEI?t=241

https://youtu.be/Hp_dQvQyYEI?t=241

What is a PWA

“A Progressive Web App (PWA) is a
web app that leverages special
browser capabilities that enable the
app to act more like a native or
mobile app when running on capable
browsers. That’s it, that’s all that
needs to be said - ...”

Learning Progressive Web Apps by by John M.
Wargo (Addison Wesley 2020)

The community-driven
logo for PWA

The PWA advantage
“With the additional superpowers they introduce,
progressive web apps fulfil many of the
expectations we have from native apps [including]:
availability regardless of connection; fast load
times; push notifications; homescreen shortcut;
native look”

Building Progressive Web Apps, by Tal Ater (O’Reilly)

What does ‘act like a native app’ mean?
Here are some key things PWAs can do:

● be installed, either via the browser or via an app store.
○ Note: Once installed they can look and feel much like a native app (with an icon and accessible

via familiar discovery and launch processes for the platform etc.)

● load instantly
● work offline
● run outside the browser
● re-engage users when the app is closed, via:

○ accepting push messages (incl. background data sync)
○ raising notifications (with badges etc.)

Note: what you can do with a
PWA will differ by the user’s
platform - hence the emphasis
on ‘progressive’ in learning
materials associated with PWA.

Plus PWAs have access to some native
APIS, including:
● Push API (allowing us to send notifications to users when the app is closed)
● Web Share API
● Web Bluetooth API
● Sensors (accelerometer) and geolocation
● MediaStream Recording API
● Payment Request API
● Gamepad API
● Web RTC (which supports things like peer-to-peer teleconferencing)
● WebAssembly (a low-level language that provides languages like C++ and Rust

with a compilation target for the web)
● WebGL (2D and 3D graphics)

Just remember: a progressive enhancement
approach will be essential when building these
capabilities into PWA, because not all these
APIs, capabilities or sensors will be available
for all the places your app might run

https://developer.mozilla.org/en-US/docs/Web/API/Push_API
https://developer.mozilla.org/en-US/docs/Web/API/MediaStream_Recording_API
https://developer.mozilla.org/en-US/docs/Web/API/Payment_Request_API
https://developer.mozilla.org/en-US/docs/Web/API/Gamepad_API/Using_the_Gamepad_API
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://developer.mozilla.org/en-US/docs/WebAssembly
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API

How does a
PWA achieve
this?

PWA is a design pattern that combines
discrete standard specifications
“There’s no standard or
standards body for PWAs; a
PWA is just a web app built to
act a certain way. Use as much
or as little PWA functionality as
you want in your web apps.
You can have web apps that
use some PWA capabilities but
aren’t PWAs and PWAs that
use only some PWA
capabilities.”

Learning Progressive Web Apps by by John
M. Wargo (Addison Wesley 2020) ��

You can have web

apps that use some

PWA capabilities

but aren’t PWAs and

PWAs that use only

some PWA

capabilities

The three necessary
components for your
web app to be a PWA

The three components of a PWA

A web app

Your HTML, CSS,
JavaScript, images etc.

A Service Worker

A magical thing we’ll look at
in more detail later

App distribution
model

Allows for the app to be
installed. The thing which is
used here is a Web app
manifest

If you’ve got all three, you’ve got a PWA

The need for all three to be a PWA explain why “You can have web apps that use some PWA capabilities but
aren’t PWAs and PWAs that use only some PWA capabilities”

But, in order to be installable, the PWA must meet also the browser’s installability criteria. Only then will
users be able to install it.

PWA installability criteria
In addition to being a PWA, to be installable it must meet the browser’s installability
criteria. Many browsers today will analyse your web app to determine if it’s a PWA
and - if it meets their installability criteria - will:

● Indicate to the user that it is installable
● Provide a beforeinstallprompt event we can hook into

You can see the current installability criteria for the Chrome browser here:
https://web.dev/install-criteria/.

Note also, once you put a PWA online, it might just appear in app stores. For
example, the Bing web crawler automatically packages PWAs for installation on
Windows 10 and puts them in the web store

https://web.dev/install-criteria/
https://docs.microsoft.com/en-us/microsoft-edge/progressive-web-apps-edgehtml/microsoft-store#automatic-pwa-importing-with-bing

Google Lighthouse for PWA ‘audits’
The Lighthouse tool (which can be accessed via the Chrome Developer Tools
or as a command line utility is capable of performing PWA audits.

Note: unlike other audits (such as those for accessibility), it’s perfectly OK not to
get a ‘100 score’ for a PWA since the decision to opt in to PWA features, and the
extent of that opt in, are to be determined by the team.

Read more about Lighthouse here:

https://developers.google.com/web/tools/lighthouse

https://developers.google.com/web/tools/lighthouse

Installation
process
The steps to install vary
by platform. Some prompt
users to install, others
don’t.

But once installed, the
PWA is released from the
browser and behaves like
a native app - including
through familiar discovery
and launch patterns

Some important UX considerations for
PWAs
“... most importantly, the word install signals to users that the experience was
meant to be great on their device” https://youtu.be/Hp_dQvQyYEI?t=241

“... there is a bit of an install funnel. This is the same as native apps or e-commerce
conversions. Most strategies for optimization apply here as well. You don't want to
push the user to convert too soon or they'll leave your site running. You should
only promote install to users who are frequent users or who will actually benefit
from your services.” https://youtu.be/Hp_dQvQyYEI?t=326

https://youtu.be/Hp_dQvQyYEI?t=241
https://youtu.be/Hp_dQvQyYEI?t=326

So, in
summary,
PWAs are

● PWA === Web app + ServiceWorker +
distribution model (i.e. manifest)

● ‘write once, run anywhere’ combining the
capability of native with reach of web

● Installable via:
○ the browser if they meet the

browser’s installability criteria
○ app stores. Some stores will package

PWAs their crawlers encounter
● Once installed they behave like native

apps and are accessed via familiar
discovery and launch capabilities

● A careful progressive enhancement
approach is vital because some APIs might
not be available on all platforms

