
Introduction to
Regular Expressions

Workshop

A high-level look
at Regular
Expressions

What can we do with RegEx?
“Regular expressions are the key to powerful, flexible,
and efficient text processing. Regular expressions
themselves... allow you to describe and parse text.
With additional support provided by the particular tool
being used, regular expressions can add, remove,
isolate, and generally fold, spindle, and mutilate all
kinds of text and data.”

Mastering Regular Expressions, 3rd Edition

The too being
used

Regular
Expression

The tool we’re
using

Regular
expressions

Where do we use them?
There are many places we can use Regular Expressions including:

● A host programming language - support is either included in the Standard
Library (Python etc.) or built into the syntax (Perl, JavaScript etc.) of modern
languages

● IDEs and text editors (very handy for ‘find’ and ‘find and replace’ operations)
● At the command line (using Unix tools like grep)

...and lots of other places where there’s a need to search text.

What do they look like?
Regular expressions are sequences of characters that define a search pattern. The
characters in a regular expression may be:

● literal (actual text), or
● metacharacters (special characters with special meanings)

Here’s a simple example RegEx that makes use of the the ‘d’ and ‘g’ literal
characters and the ‘.’ metacharacter:

/d.g/

This matches ‘dig’, ‘dog’, ‘dzg’, etc...

There are different ‘flavours’ of RegEx
● The ways regular expressions are implemented is not always ‘regular’.
● We’ve got BRE (Basic Regular Expressions), ERE (Extended Regular

Expressions), PCRE (Perl Compatible Regular Expressions)
● Different tools will use different ‘flavours’ (some, like PHP, support multiple).
● If something’s not working, it might be that the particular tool you’re

using doesn’t support the RegEx feature you’re trying to use. JavaScript,
for example, doesn’t support ‘lookbehinds’ - as I learned when first trying
to use them!

Regular
expression

Let’s start using
them

Matching
single

characters

Here’s an example to explore:

● Matching single literal
characters

● Regex ‘flags’
● Using a ‘.’ metacharacter
● Escaping characters

https://regexr.com/4bn3k

Using
alternation

Use alternation to match either A or B

The ‘pipe’ character provides
alternation in Regular Expressions.

Here’s a very simple example:

● https://regexr.com/4cu8v

https://regexr.com/4cu8v

Using
character

sets

● In regular expressions a set of
characters is defined using the
metacharacters [and]

● Everything between them is
part of the set and any one of
the set members must match

Here’s an example to explore this
https://regexr.com/4bv1d

https://regexr.com/4bv1d

Using
character set

ranges

In addition to literal character set
ranges, we can use the ‘-’
metacharacter to define character
set ranges.

Here’s an example:
https://regexr.com/4c0mr

https://regexr.com/4c0mr

“Anything but”
matching

Negating a character set using the
^ metacharacter

The ^ metacharacter negates all
characters in a set or range.

Here’s an example:

http://regexr.com/4c3o5

http://regexr.com/4c3o5

A closer look at
metacharacters

Simple metacharacters and their usage

Metacharacter Purpose Usage Meaning

[] Define a set [cm]at Match ‘cat’ or ‘mat’

. Match any character . Match any single character

- Specify a range [0-5] Match 0, 1, 2, 3, 4 or 5

\ ‘Escape’ the next character file\.txt Match file.txt

^ Negate a character set* [^cd] Match anything but ‘c’ or ‘d’

* we won’t go into this now, but ^ has a different meaning when used outside a character set

Other metacharacters and their usage

Metacharacter Purpose Notes

\s Match any whitespace Includes tabs, spaces and carriage returns

\S Match any non-whitespace Equivalent to [^\f\n\r\t\v]

\d Match any digit Equivalent to [0-9]

\D Match any non-digit Equivalent to [^0-9]

\w Match any alphanumeric and _ Equivalent to [a-zA-Z0-9_]

\W Match any non alphanumeric Equivalent to [^a-zA-Z0-9_]

Repeating
matches

Using quantifiers
Often we will not know how many characters are
in the patterns. We can handle this uncertainty
with quantifiers.

Here’s are some examples to experiment with:

https://regexr.com/4cfm9

Match the previous
character...

+ one or more times

? Zero or one time

* Zero or more times

{2,4} Two to four times

{,5} Up to five times

https://regexr.com/4cfm9

Quantifiers,
greed and
lazyness

It’s important to understand how
quantifiers behave in certain

circumstances

By default, quantifiers are ‘greedy’
meaning that they will continue
matching characters until they’re
unable to consume any more. We
can change this by appending a ? to
the quantifier

Here’s an example:
http://regexr.com/4cfoh

http://regexr.com/4cfoh

Position
matching

Use word
boundaries

Allows us to specify that the match
should be at the beginning or end of a

word.

● \b will match a word boundary
● \B will match ‘not’ a word

boundary

Here’s an example:

http://regexr.com/4cu4l

Note: the boundary metacharacters
match a position, not a character

http://regexr.com/4cu4l

Use string
boundaries

Match based on position within the
string

● ^ for start of string*
● $ for end of string

Here are some examples:

● https://regexr.com/4cu6n -
using ^

● https://regexr.com/4cu79 -
adding $ and multi-line mode

Note: we’ve seen the ^ metacharacter before. It’s one
of several characters that can have a different meaning
depending on context.

https://regexr.com/4cu6n
https://regexr.com/4cu79

Sub-expressions
and
backreferences

Grouping with
sub-expressions

Creating our own ‘parts’ of a match

Sub-expressions allow us to group
parts of an expression so that they
are treated as a single entity (for
quantification purposes or to be
clear about alternation)

Here’s a simple example:
https://regexr.com/4cu7u

And here’s a common alternation
‘gotcha’: https://regexr.com/4cu8m

https://regexr.com/4cu7u
https://regexr.com/4cu8m

Using
back-references

Back references - as the name
suggests - allows us to capture a
match and refer back to what was
matched. This is incredibly powerful:

Here’s an example:

● https://regexr.com/4cub1

https://regexr.com/4cub1

That’s all… for now.
This session was intended to be an introduction to Regular Expressions. While
we’ve covered quite a bit of ground, there are some areas we’ve not covered but I
hope this has at least provided a starting point.

I love Regular Expressions, so would be absolutely delighted to help you solve any
pattern matching problems you come across.

Here are some useful and fun resources to play with:

● Regex Golf https://alf.nu/RegexGolf
● Regex Crossword https://regexcrossword.com/

https://alf.nu/RegexGolf
https://regexcrossword.com/

Thank you

