
GraphQL

Introduction

What is GraphQL

API specification Open Sourced by
Facebook in 2015

Developed to address two primary
shortcomings of REST: flexibility and

efficiency

Described as being compatible with any
language and framework

Key conceptual difference to REST

REST provides unique resource endpoints
that return fixed data structures

GraphQL provides a single endpoint that
responds to queries

This is described as 'declarative data
fetching' because clients express what

they need and receive nothing more

Three primary motivations behind GraphQL

Conserving network: increased mobile requires more
efficient data loading

Abstraction: a heterogeneous client-side landscape
makes it difficult to build a single REST API

that meets all client needs

Flexibility: it is easier to change a client that
obtain data from a single queryable endpoint
than it is to modify the design of a REST API

Core concepts

Implements a type system that you define with a
'schema' for the API. Schemas are typically a

collection of GraphQL types. The schema is one
of the most important concepts in GraphQL
because it represents the contract between
client and server: clients can expect these X
capabilities and here's how you access them

Schemas are defined with the Schema
Definition Language (SDL)

Relations

CRUD - request / response

Queries: reading 'fields'

Simple

With arguments (if
specified in the schema)

GraphQL seems to
simplify the process of

retrieving relations

Get all Persons and, for each of
them, all of their posts

Compare this to something 'RESTful' like
https://github.com/orgs/nationalarchives/teams/digital-services/members

Mutations provide for: Creating, Updating and Deleting

Creating and retrieving in
a single round-trip

Create a person and send me the created
person's ID in the response.

Subscriptions: sockets

Provide for
'realtime' updates

Client subscribes to a new Person being created.
Whenever that event happens, the server pushes

this information to the client

Initiates a continuous connection to the
server (socket). This is a

stream rather than the
request/response cycle
elsewhere in GraphQL

Key architectural points

GraphQL is only a specification
that describes how a GraphQL

server has to behave

You write your own implementation (but there
are many reference implementations available)

GraphQL is transport layer agnostic and can be
used with any available network protocol (incl.

TCP or WebSockets etc.)

Schema and Types

Uses a strong type system to define
the capabilities of an API

All types that are exposed by the API are
described in a schema (using GraphQL

Schema Definition Language)

This schema serves as a contract
between client and server

Which allows frontend, backend - or
different micro services - teams to work

independently of each other

Resolver functions

A GraphQL server has
one resolver function
per field (and the sole

purpose of the function
is to retrieve the data

for that field)

Architectural use cases (not necessarily mutually
exclusive):

GraphQL with a
connected database

Here the GraphQL server resolves queries
and constructs a response from data it

retrieves from a database

GraphQL as a thin integration layer in front of a number of
third party or legacy systems.

Acts to unify many different
(existing) APIs and hide

complexity of data fetching logic

This might include databases, web
services, 3rd party APIs etc.

Provides considerable flexibility for the
creation and amendment of clients

GraphQL vs REST

Pros

Avoids overfetching
and underfetching

Example: details page,
related research guide, traces through time

In REST: 3 requests with a lot of
unnecessary data being requested

Commonly dealt with in supposedly RESTful
applications by creating endpoints that provide only

the data needed for a specific view

But this tight coupling
slows the ability to respond

to changed requirements
for the front end

In GraphQL: single request

POST request - the body of which
contains a query that describes all the

data requirements of the client

Note: this means that more
information is required at the

point of request

Supports fine grained analytics
about what data is being

requested by clients

This information can be used to evolve an API
to deprecate fields that are no longer needed

(because you can see what they are)

Versioning

Because GraphQL APIs are open for extension this
avoids problems associated with the common

practice of versioning RESTful APIs.

Cons

Error handling (in HTTP)

Always results in a 200 status
code, with the error message

provided in the response

Loss or URIs and
'resources'

Loss of HTTP
caching

While REST can take advantage of
HTTP caching, GraphQL clients must

manage caching themselves


