Lead Front End Developer



Version

A system to record changes to files

contrOI over time so that you can recall

specific versions later.
What is it?




Informal ‘systems’ people use for version control

It's not long after being a computer user that people
start creating their own ‘systems’ for local version
control. Common approaches include:

° Ctrl+Zz
e Creating copies to act as a ‘backup’

This are very common because they are so simple,
but are crude, limited and incredibly error prone.

== w

Name

L app

1. app - Copy

. app (June 2018)

1. app (new)

. app (new) - with changes by Eric
. app (newer)

Type

File folder
File folder
File folder
File folder
File folder
File folder



Before looking at
formal version control,
let's introduce the
‘commit’ (aka ‘patch
set’, ‘change set’ etc.)




A representation of the commit cycle

Create or change code files Commit the changes

to fulfil a specific task Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor.
In order to fulfil a task, the developer Donec facilisis lacus eget mauris.

creates or amends files

Select files to be included in

the commit

This will often be all the files that have Describe the Changes
changed, but it may be that the developer
feels there would be benefit if splitting the
commit over two or more commits

Provide a message that communicates the
context of a change to future developers




Commit
messages
communicate
the context of a
change

“The contributors to these repositories know
that a well-crafted Git commit message is
the best way to communicate context
about a change to fellow developers (and
indeed to their future selves). A diff will tell
you what changed, but only the commit

message can properly tell you why.”

Chris Beams. “How to Write a Git
Commit Message”

E git / git ©Watch | 1,889 Y Star 22,077

<> Code ‘I Pull requests 131 1 Insights

replace-object: check_replace_refs is safe in multi repo environment
In ellllce (inline lookup_replace_object() calls, 2011-85-15) a shortcut
for checking the object replacement was added by setting check_replace_refs
to @ once the replacements were evaluated to not exist. This works fine in
with the assumption of only one repository in existence.

The assumption won't hold true any more when we work on multiple instances
of a repository structs (e.g. one struct per submodule), as the first
repository to be inspected may have no replacements and would set the
global variable. Other repositories would then completely omit their
evaluation of replacements.

This reverts back the meaning of the flag ‘check_replace_refs' of
"Do we need to check with the lookup table?" to "Do we need to read
the replacement definition?", adding the bypassing logic to
lookup_replace_object after the replacement definition was read.

As with the original patch, delay the renaming of the global variable

Signed-off-by: Stefan Beller <sbeller@google.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>

¥ next (#412) + pu (#444)

.ﬁ stefanbeller authored and gitster committed 19 days ago 1 parent 127449

Showing 3 changed files with 5 additions and 5 deletions.

2 Em environment.c

2%3 @@ -50,7 +50,7 @@ const char xeditor_program;

const char xaskpass_program;
const char xexcludes_file;
enum auto_crlf auto_crlf = AUTO_CRLF_FALSE;
53 —-int check_replace_refs = 1;
53 +int check_replace_refs = 1; /% NEEDSWORK: rename to read_replace_refs */
char xgit_replace_ref_base;

anim anl rara anl — ENl IINGET:

¥ Fork

Browse

12,848

files

commit c3c36d7de2cf@9fb@5701ed672b26c51a008f5cd

View

v



Evolution of
formal Version

Gontrol Systems
(VCSs)




Local Version
CGontrol

A long time ago programmers
introduced local version control
systems which stored ‘patch sets’ (i.e.
the difference between files at different
points in time).

Primary benefit:

e This allowed a programmer to
recreate a specific state of a file
at any given point by applying or
removing specific patches

Local

Computer

Checkout

Version Database

Version 3

Version 2

Version 1




Centralized
Version Control
Systems
(CVCSs)

A single server that contains all the
versioned files and programmers
‘check out’ files from that single place

Primary benefit: Allowed programmers
to collaborate with others

Drawbacks: huge SPOF

Computer A

G-

Central VCS Server

Computer B

G-

Version Database

Version 3

Version 2

Version 1




Distributed
Version Control

Systems
(DVCSs)

In a DVCS programmers don’t just
check out the latest snapshot of the
files; they fully mirror the repository -
including its history.

Primary benefit: every clone is a full
backup of the code and its history.

Git is a DVCS, bit it is not the only one

Server Computer

Version Database

Version 3
|
Version 2
|
Version 1

Computer A

Version Database

Version 3
I
Version 2
|
Version 1

Developers
can also

collaborate
directly with

each other

Computer B

Version Database

Version 3
|
Version 2
|
Version 1




Each huilds upon the capabhilities of its
predecessor

Distributed Version
Control Systems

Fixes the SPOF that was introduced
by CVCs

Centralised Version
Control Systems e

Allowed programmers to collaborate

Local Version Control
Systems

Allowed programmers to recreate the
state of a file at any given point in
time



Think of GitHub
as a place for
collahoration
with Git




A hosting service for version control
using Git. In addition to being
somewhere that developers can ‘pull’
and ‘push’ code, it provides several
other features, including:

Integrations

Code review (Pull requests)
Team management

Project management

GitHub

Pull requests

@ git

Server Computer

Version Database

Version 3
Vers;.on 2
|
4 L

Computer A

Version Database

Version 3
|
Version 2
|
Version 1

Computer B

Version Database

Version 3
|
Version 2
|
Version 1




So, what is a
Pull Request?




Here's a good explanation

GitHub & Git Foundations

with Matthew McCullough and Brent Beer



http://www.youtube.com/watch?v=d5wpJ5VimSU

