
Git and GitHub
Lead Front End Developer

Version
control

What is it?

A system to record changes to files
over time so that you can recall
specific versions later.

Informal ‘systems’ people use for version control

It’s not long after being a computer user that people
start creating their own ‘systems’ for local version
control. Common approaches include:

● Ctrl+Z
● Creating copies to act as a ‘backup’

This are very common because they are so simple,
but are crude, limited and incredibly error prone.

Before looking at
formal version control,
let’s introduce the
‘commit’ (aka ‘patch
set’, ‘change set’ etc.)

A representation of the commit cycle

01

02

03

04Create or change code files
to fulfil a specific task

In order to fulfil a task, the developer
creates or amends files

Select files to be included in
the commit

This will often be all the files that have
changed, but it may be that the developer

feels there would be benefit if splitting the
commit over two or more commits

Commit the changes

Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor.
Donec facilisis lacus eget mauris.

Describe the changes

Provide a message that communicates the
context of a change to future developers

Commit
messages
communicate
the context of a
change
“The contributors to these repositories know
that a well-crafted Git commit message is
the best way to communicate context
about a change to fellow developers (and
indeed to their future selves). A diff will tell
you what changed, but only the commit
message can properly tell you why.”

Chris Beams. “How to Write a Git
Commit Message”

Evolution of
formal Version
Control Systems
(VCSs)

Local Version
Control
A long time ago programmers
introduced local version control
systems which stored ‘patch sets’ (i.e.
the difference between files at different
points in time).

Primary benefit:

● This allowed a programmer to
recreate a specific state of a file
at any given point by applying or
removing specific patches

Centralized
Version Control
Systems
(CVCSs)
A single server that contains all the
versioned files and programmers
‘check out’ files from that single place

Primary benefit: Allowed programmers
to collaborate with others

Drawbacks: huge SPOF

Distributed
Version Control
Systems
(DVCSs)
In a DVCS programmers don’t just
check out the latest snapshot of the
files; they fully mirror the repository -
including its history.

Primary benefit: every clone is a full
backup of the code and its history.

Git is a DVCS, bit it is not the only one

Developers
can also
collaborate
directly with
each other

Each builds upon the capabilities of its
predecessor

Local Version Control
Systems

Allowed programmers to recreate the
state of a file at any given point in
time

3

Centralised Version
Control Systems

Allowed programmers to collaborate

2

Distributed Version
Control Systems

Fixes the SPOF that was introduced
by CVCs

1

Think of GitHub
as a place for
collaboration
with Git

GitHub
A hosting service for version control
using Git. In addition to being
somewhere that developers can ‘pull’
and ‘push’ code, it provides several
other features, including:

● Integrations
● Code review (Pull requests)
● Team management
● Project management

Diffs

Pull requests

Collaboration tools
Editing

CommitsTeam management

Project management

Integrations

So, what is a
Pull Request?

Here’s a good explanation

http://www.youtube.com/watch?v=d5wpJ5VimSU

